圆的方程●知识梳理1.圆的方程(1)圆的标准方程圆心为(a,b),半径为r的圆的标准方程为(x-a)2+(y-b)2=r2.说明:方程中有三个参量a、b、r,因此三个独立条件可以确定一个圆.(2)圆的一般方程二次方程x2+y2+Dx+Ey+F=0.(*)将(*)式配方得(x+)2+(y+)2=.当D2+E2-4F>0时,方程(*)表示圆心(-,-),半径r=的圆,把方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)叫做圆的一般方程.说明:(1)圆的一般方程体现了圆方程的代数特点:a.x2、y2项系数相等且不为零.b.没有xy项.(2)当D2+E2-4F=0时,方程(*)表示点(-,-),当D2+E2-4F<0时,方程(*)不表示任何图形.(3)据条件列出关于D、E、F的三元一次方程组,可确定圆的一般方程.(3)圆的参数方程①圆心在O(0,0),半径为r的圆的参数方程为x=rcosθ,y=rsinθ②圆心在O1(a,b),半径为r的圆的参数方程为x=a+rcosθ,y=b+rsinθ说明:在①中消去θ得x2+y2=r2,在②中消去θ得(x-a)2+(y-b)2=r2,把这两个方程相对于它们各自的参数方程又叫做普通方程.2.二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件若上述二元二次方程表示圆,则有A=C≠0,B=0,这仅是二元二次方程表示圆的必要条件,不充分.在A=C≠0,B=0时,二元二次方程化为x2+y2+x+y+=0,仅当()2+()2-4·>0,即D2+E2-4AF>0时表示圆.故Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是:①A=C≠0,②B=0,③D2+E2-4AF>0.●点击双基1.方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0(t∈R)表示圆方程,则t的取值范围是用心爱心专心(θ为参数).①(θ为参数).②A.-10,得7t2-6t-1<0,即-0),下列结论错误的是A.当a2+b2=r2时,圆必过原点B.当a=r时,圆与y轴相切C.当b=r时,圆与x轴相切D.当b0)为两定点,动点P到A点的距离用心爱心专心与到B点的距离的比为定值a(a>0),求P点的轨迹.剖析:给曲线建立方程是解析几何的两个主要问题之一,其基本方法就是把几何条件代数化;主要问题之二是根据方程研究曲线的形状、性质,即用代数的方法研究几何问题.解:设动点P的坐标为(x,y),由=a(a>0)得=a,化简,得(1-a2)x2+2c(1+a2)x+c2(1-a2)+(1-a2)y2=0.当a=1时,方程化为x=0.当a≠1时,方程化为(x-c)2+y2=()2.所以当a=1时,点P的轨迹为y轴;当a≠1时,点P的轨迹是以点(c,0)为圆心,||为半径的圆.评述:本题主要考查直线、圆、曲线和方程等基本知识,考查运用解析几何的方法解决问题的能力,对代数式的运算化简能力有较高要求.同时也考查了分类讨论这一数学思想.【例2】一圆与y轴相切,圆心在直线x-3y=0上,且直线y=x截圆所得弦长为2,求此圆的方程.剖析:利用圆的性质:半弦、半径和弦心距构成的直角三角形.解:因圆与y轴相切,且圆心在直线x-3y=0上,故设圆方程为(x-3b)2+(y-b)2=9b2.又因为直线y=x截圆得弦长为2,则有()2+()2=9b2,解得b=±1.故所求圆方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.评述:在解决求圆的方程这类问题时,应当注意以下几点:(1)...