电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第三章 空间向量与立体几何 3.2 立体几何中的向量方法 3.2.2 利用向量解决平行、垂直问题讲义 新人教A版选修2-1-新人教A版高二选修2-1数学教案VIP免费

高中数学 第三章 空间向量与立体几何 3.2 立体几何中的向量方法 3.2.2 利用向量解决平行、垂直问题讲义 新人教A版选修2-1-新人教A版高二选修2-1数学教案_第1页
1/9
高中数学 第三章 空间向量与立体几何 3.2 立体几何中的向量方法 3.2.2 利用向量解决平行、垂直问题讲义 新人教A版选修2-1-新人教A版高二选修2-1数学教案_第2页
2/9
高中数学 第三章 空间向量与立体几何 3.2 立体几何中的向量方法 3.2.2 利用向量解决平行、垂直问题讲义 新人教A版选修2-1-新人教A版高二选修2-1数学教案_第3页
3/9
3.2.2利用向量解决平行、垂直问题1.用向量方法证明空间中的平行关系(1)证明线线平行设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔□a∥b⇔□a=λb⇔□a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)证明线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔□a⊥u⇔□a·u=0⇔□a1a2+b1b2+c1c2=0.(3)证明面面平行①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔□u∥v⇔u=λv⇔□a1=λa2,b1=λb2,c1=λc2(λ∈R).②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.2.用向量方法证明空间中的垂直关系(1)证明线线垂直设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2⇔□u1⊥u2⇔□u1·u2=0⇔□a1a2+b1b2+c1c2=0.(2)证明线面垂直设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α⇔□u∥v⇔□u=λv(λ∈R)⇔□a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)证明面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔□u⊥v⇔□u·v=0⇔□a1a2+b1b2+c1c2=0.1.判一判(正确的打“√”,错误的打“×”)(1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.()(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.()(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.()答案(1)×(2)√(3)×2.做一做(请把正确的答案写在横线上)(1)若直线l1的方向向量为u1=(1,3,2),直线l2上有两点A(1,0,1),B(2,-1,2),则两直线的位置关系是________.(2)若直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则直线l与平面α的位置关系为________.(3)已知两平面α,β的法向量分别为u1=(1,0,1),u2=(0,2,0),则平面α,β的位置关系为________.(4)若平面α,β的法向量分别为(-1,2,4),(x,-1,-2),并且α⊥β,则x的值为________.答案(1)垂直(2)垂直(3)垂直(4)-10探究1利用空间向量解决平行问题例1已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是BB1,DD1的中点,求证:(1)FC1∥平面ADE;(2)平面ADE∥平面B1C1F.[证明](1)如图所示,建立空间直角坐标系Dxyz,则有D(0,0,0),A(2,0,0),C1(0,2,2),E(2,2,1),F(0,0,1),B1(2,2,2),所以FC1=(0,2,1),DA=(2,0,0),AE=(0,2,1).设n1=(x1,y1,z1)是平面ADE的法向量,则n1⊥DA,n1⊥AE,即得令z1=2,则y1=-1,所以n1=(0,-1,2).因为FC1·n1=-2+2=0,所以FC1⊥n1.又因为FC1⊄平面ADE,所以FC1∥平面ADE.(2)因为C1B1=(2,0,0),设n2=(x2,y2,z2)是平面B1C1F的一个法向量.由n2⊥FC1,n2⊥C1B1,得得令z2=2,得y2=-1,所以n2=(0,-1,2),因为n1=n2,所以平面ADE∥平面B1C1F.拓展提升利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系;(2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.【跟踪训练1】在长方体ABCD-A1B1C1D1中,AB=4,AD=3,AA1=2,P,Q,R,S分别是AA1,D1C1,AB,CC1的中点.求证:PQ∥RS.证明证法一:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系Dxyz.则P(3,0,1),Q(0,2,2),R(3,2,0),S(0,4,1),PQ=(-3,2,1),RS=(-3,2,1),∴PQ=RS,∴PQ∥RS,即PQ∥RS.证法二:RS=RC+CS=DC-DA+DD1,PQ=PA1+A1Q=DD1+DC-DA,∴RS=PQ,∴RS∥PQ,即RS∥PQ.探究2利用空间向量解决垂直问题例2如图,在四棱锥E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=120°.求证:平面ADE⊥平面ABE.[证明]取BE的中点O,连接OC,则OC⊥EB,又AB⊥平面BCE.∴以O为原点建立空间直角坐标系Oxyz.如图所示.则由已知条件有C(1,0,0),B(0,,0),E(0,-,0),D(1,0,1),A(0,,2).设平面ADE的法向量为n=(a,b,c),则n·EA=...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第三章 空间向量与立体几何 3.2 立体几何中的向量方法 3.2.2 利用向量解决平行、垂直问题讲义 新人教A版选修2-1-新人教A版高二选修2-1数学教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部