预习课本P21~25,思考并完成以下问题1.全称量词、全称命题的定义是什么?2.存在量词、特称命题的定义是什么?3.全称命题与特称命题的否定分别是什么命题?1.全称量词与全称命题全称量词所有的、任意一个、一切、每一个、任给符号__∀__全称命题含有全称量词的命题形式“对M中任意一个x,有p(x)成立”,可用符号简记为“∀x∈M,p(x)”2.存在量词与特称命题存在量词存在一个、至少有一个、有一个、有些、有的符号表示__∃__特称命题含有存在量词的命题形式“存在M中的一个x0,使p(x0)成立”可用符号简记为“∃x0∈M,p(x0)”3.全称命题与特称命题的否定知识点原命题命题的否定全称命题p:∀x∈M,p(x)綈p:∃x0∈M,綈p(x0)的否定特称命题的否定p:∃x0∈M,p(x0)綈p:∀x∈M,綈p(x)[点睛](1)全称命题的否定全称命题的否定是一个特称命题,否定全称命题时关键是找出全称量词,明确命题所提供的性质.(2)特称命题的否定特称命题的否定是一个全称命题,否定特称命题时关键是找出存在量词,明确命题所提供的性质.1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)在全称命题和特称命题中,量词都可以省略()(2)“有的等差数列也是等比数列”是特称命题()(3)“三角形内角和是180°”是全称命题()答案:(1)×(2)√(3)√2.命题“∀x∈R,|x|+x2≥0”的否定是()A.∀x∈R,|x|+x2<0B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+x<0D.∃x0∈R,|x0|+x≥0答案:C3.下列全称命题为真命题的是()A.所有的质数是奇数B.∀x∈R,x2+1≥1C.对每一个无理数x,x2也是无理数D.所有的能被5整除的整数,其末位数字都是5答案:B4.命题p:∃x0∈R,x+2x0+5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定为綈p:______________.答案:特称命题假∀x∈R,x2+2x+5≥0全称命题与特称命题的判断[典例]判断下列语句是全称命题,还是特称命题.(1)凸多边形的外角和等于360°;(2)有的向量方向不定;(3)对任意角α,都有sin2α+cos2α=1;(4)矩形的对角线不相等;(5)若一个四边形是菱形,则这个四边形的对角线互相垂直.[解](1)可以改为所有的凸多边形的外角和等于360°,故为全称命题.(2)含有存在量词“有的”,故是特称命题.(3)含有全称量词“任意”,故是全称命题.(4)可以改为所有矩形的对角线不相等,故为全称命题.(5)若一个四边形是菱形,也就是所有的菱形,故为全称命题.判断一个语句是全称命题还是特称命题的思路[注意]全称命题可能省略全称量词,特称命题的存在量词一般不能省略.[活学活用]用全称量词或存在量词表示下列语句:(1)不等式x2+x+1>0恒成立;(2)当x为有理数时,x2+x+1也是有理数;(3)等式sin(α+β)=sinα+sinβ对有些角α,β成立;(4)方程3x-2y=10有整数解.解:(1)对任意实数x,不等式x2+x+1>0成立.(2)对任意有理数x,x2+x+1是有理数.(3)存在角α,β,使sin(α+β)=sinα+sinβ成立.(4)存在一对整数x,y,使3x-2y=10成立.全称命题、特称命题的真假判断[典例](1)下列命题中的假命题是()A.∃x0∈R,lgx0=0B.∃x0∈R,tanx0=1C.∀x∈R,x2>0D.∀x∈R,ex>0(2)下列命题中的真命题是()A.∀φ∈R,函数f(x)=sin(2x+φ)都不是偶函数B.∃α0,β0∈R,使cos(α0+β0)=cosα0+cosβ0C.向量a=(2,1),b=(-1,0),则a在b方向上的投影为2D.“|x|≤1”是“x≤1”的既不充分又不必要条件[解析](1)对于A,x=1时,lgx=0;对于B,x=kπ+(k∈Z)时,tanx=1;对于C,当x=0时,x2=0,所以C中命题为假命题;对于D,ex>0恒成立.(2)对于A,当φ=时,f(x)=cos2x,为偶函数,故A为假命题;对于B,令α0=,β0=-,则cos(α0+β0)=cos=,cosα0+cosβ0=+0=,cos(α0+β0)=cosα0+cosβ0成立,故B为真命题;对于C,向量a=(2,1),b=(-1,0),则a在b方向上的投影为==-2,故C为假命题;对于D,|x|≤1,即-1≤x≤1,故充分性成立,若x≤1,则|x|≤1不一定成立,所以“|x|≤1”为“x≤1”的充分不必要条件,故D为假命题.[答案](1)C(2)B全称命题与特称命题的真假判...