第61题三视图与直观图问题I.题源探究·黄金母题【例1】如图是一个奖杯的三视图,试根据奖杯的三视图计算它的表面积与体积(尺寸如图,单位:,取3.14,结果精确到,可用计算器)【解析】由奖杯的三视图知奖杯的上部是直径为4的球,中部是一个四棱柱,其中上、下底面是边长分别为8、4的矩形,四个侧面中的两个侧面是边长分别为20、8的矩形,另两个侧面是边长分别为20、4的矩形,下部是一个四棱台,其中上底面是边长分别10、8的矩形,下底面是边长分别20、16的矩形,直棱台的高为2,所以它的表面各和体积分别为1193、1067.【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图,具体方法为;II.考场精彩·真题回放【例2】【2017课标II文6】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.B.C.D.【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为,故选B.【例3】【2016全国新课标Ⅲ卷】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为A.B.C.90D.81【答案】B【解析】由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积,故选B.【例4】﹙2016年全国1卷理﹚如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.B.C.D.【答案】A【解析】由三视图知:该几何体是个球,设球的半径为,则,解得,所以它的表面积是,故选A.【例5】【2016全国新课标Ⅱ卷】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π【答案】C【解析】由题意可知,圆柱的侧面积为,圆锥的侧面积为,圆柱的底面面积为,故该几何体的表面积为,故选C.【例6】【2016天津高考】将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()【答案】B【解析】由题意得截去的是长方体前右上方顶点,故选B.【例7】【2017北京文6】某三棱锥的三视图如图所示,则该三棱锥的体积为(A)60(B)30(C)20(D)10【答案】D【解析】该几何体是三棱锥,如图:图中红色线围成的几何体为所求几何体,该几何体的体积是,故选D.【例8】【2017山东文13】由一个长方体和两个圆柱构成的几何体的三视图如图,则该几何体的体积为.【答案】【解析】试题分析:由三视图可知,长方体的长宽高分别为2,1,1,圆柱的高为1,底面圆半径为1,所以.精彩解读【试题来源】人教版A版必修二第29页习题1.3B组第1题【母题评析】本题根据球、柱、台组合的组合体的三视图求其体积与表面积,这是题型在高考中较为多见,因此在备考中必须引起重视.【思路方法】根据三视图求相应的几何体的体积与表面积通常分两个步骤完成:(1)根据三视图确定出几何体的直观图;(2)三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出相关数据.【命题意图】本类题通常主要考查识图能力与空间想象能力.【考试方向】这类试题在考查题型上,通常基本以选择题或填空题的形式出现,难度中档,往往与柱、锥、台、球的体积或表面积计算相联系.【难点中心】根据三视图求几何体的体积与表面积其难点主要是如何根据三视图还原出几何体的直观图.III.理论基础·解题原理考点一三视图的基本概念主视图——光线从几何体的前面向后面正投影所得到的投影图叫做几何体的正视图,反映了几何体的左右、上下的位置关系.俯视图——光线从几何体的左面向右面正投影所得到的投影图叫做几何体侧视图.反映了几何体的左右、前后的位置关系.左视图——光线从几何体的上面向下面正投影所得到的投影图叫做几何体的俯视图.反映了几何体的前后、上下的位置关系.考点二棱柱、棱锥、棱台的三视图棱柱、棱锥、棱台通常情况下,正视图分别表现为矩形、三角形、梯形,侧视图分别表现为矩形、三角形、梯形,俯视图表现为多边形考点二圆柱、圆锥、圆台、...