电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学311两角差的余弦课件人教版必修四 课件VIP免费

高中数学311两角差的余弦课件人教版必修四 课件_第1页
1/11
高中数学311两角差的余弦课件人教版必修四 课件_第2页
2/11
高中数学311两角差的余弦课件人教版必修四 课件_第3页
3/11
3.1.1两角差的余弦公式目标导学1、了解两角差的余弦公式的推导和证明过程;2、掌握两角差的余弦公式并能利用公式进行简单的三角函数式的求值、化简和证明。不用计算器,求的值.1.15°能否写成两个特殊角的和或差的形式?2.cos15°=cos(45°-30°)=cos45°-cos30°成立吗?3.cos(45°-30°)能否用45°和30°的角的三角函数来表示?4.如果能,那么一般地cos(α-β)能否用α、β的角的三角函数来表示?cos375cos375cos375cos36015cos15解:问题探究??如何用任意角α与β的正弦、余弦来表示cos(α-β)?思考:你认为会是cos(α-β)=cosα-cosβ吗?-111-1α-βBAyxoβαcossinOA�α,αcossinOB�β,β)cos(OBOAOBOA)cos(OBOAsinsincoscos∵∴cos(α-β)=cosαcosβ+sinαsinβCCCSSα-β差角的余弦公式结论归纳α,β对于任意角cos()coscossinsinα-βαβ+αβ注意:1.公式的结构特点;2.对于α,β,只要知道其正弦或余弦,就可以求出cos(α-β)不查表,求cos(–375°)的值.解:cos(–375°)=cos15°=cos(45°–30°)=cos45°cos30°+sin45°sin30°23212222624应用举例分析:cos15cos4530cos15cos6045思考:你会求的值吗?sin75.利用差角余弦公式求的值cos15学以致用!!例1.已知2cos,3α=-α5求的值.cos4α例2.已知2sin,,,4α=α5cos,5β=-13是第三象限角,β求cos(α-β)的值练习:P140练习:000055sin175sin55cos175cos.121)24sin()21sin()24cos()21cos(.2000022思考题:已知都是锐角,,αβcos,4α=55cos13α+βcos求的值ββ=α+βα变角:分析:coscossinαβαsincosαβαcos531312541356516三角函数中一定要注意观察角度之间的关系,例如=α+β=(-)+建议作业:P1502、3、4、5

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学311两角差的余弦课件人教版必修四 课件

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部