电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第一章 集合与常用逻辑用语 1.4.1 充分条件与必要条件学案 新人教A版必修第一册-新人教A版高一第一册数学学案

高中数学 第一章 集合与常用逻辑用语 1.4.1 充分条件与必要条件学案 新人教A版必修第一册-新人教A版高一第一册数学学案_第1页
1/11
高中数学 第一章 集合与常用逻辑用语 1.4.1 充分条件与必要条件学案 新人教A版必修第一册-新人教A版高一第一册数学学案_第2页
2/11
高中数学 第一章 集合与常用逻辑用语 1.4.1 充分条件与必要条件学案 新人教A版必修第一册-新人教A版高一第一册数学学案_第3页
3/11
1.4.1 充分条件与必要条件1.理解充分、必要条件的概念.2.会根据命题的条件和结论的关系判断是否为充分条件、必要条件.1.命题及相关概念2.充分条件与必要条件一般地,数学中的每一条判定定理都给出了相应数学结论成立的一个充分条件.数学中的每一条性质定理都给出了相应数学结论成立的一个必要条件.温馨提示:(1)充分、必要条件的判断讨论的是“若 p,则 q”形式的命题.若不是,则首先将命题改写成“若 p,则 q”的形式.(2)不能将“若 p,则 q”与“p⇒q”混为一谈,只有“若 p,则 q”为真命题时,才有“p⇒q”.1.“对角线相等的平行四边形是矩形”(1)这个命题是真命题吗?(2)将命题改写为“若 p,则 q”的形式.(3)“平行四边形的对角线相等”是“四边形为矩形”的什么条件.[答案] (1)是真命题 (2)若平行四边形的对角线相等,则这个四边形为矩形 (3)充分条件2.判断正误(正确的打“√”,错误的打“×”)(1)“集合{a,b,c}有 3 个子集”是命题.( )(2)若 p 是 q 的充分条件,则 p 是唯一的.( )(3)若 q 是 p 的必要条件,则由 p 推出的结论 q 是不唯一的.( )(4)数学中每一条定理都给出了相应结论成立的一个充分条件.( )[答案] (1)× (2)× (3)√ (4)×题型一充分、必要条件的概念及语言表述【典例 1】 将下面的定理写成“若 p,则 q”的形式,并用充分条件、必要条件的语言表述:(1)两个全等三角形的对应高相等;(2)等底等高的两个三角形是全等三角形.[解] (1)若两个三角形是全等三角形,则它们的对应高相等,所以“两个三角形是全等三角形”是“它们的对应高相等”的充分条件;“对应高相等”是“两个三角形是全等三角形”的必要条件.(2)若两个三角形等底等高,则这两个三角形是全等三角形,所以“两个三角形等底等高”是“这两个三角形是全等三角形”的不充分条件;“两个三角形是全等三角形”是“这两个三角形等底等高”的不必要条件.(1)对充分、必要条件的理解① 对充分条件的理解:i)所谓充分,就是说条件是充分的,也就是说条件是充足的,条件是足够的,条件是足以保证的.“有之必成立,无之未必不成立”.ii)充分条件不是唯一的,如 x>2,x>3 都是 x>0 的充分条件.② 对必要条件的理解:i)所谓必要,就是条件是必须有的,必不可少的,缺其不可.“有之未必成立,无之必不成立”.ii)必要条件不是唯一的,如 x>0,x>5 等都是 x>9 的必要条件.(2)用充分、必要...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第一章 集合与常用逻辑用语 1.4.1 充分条件与必要条件学案 新人教A版必修第一册-新人教A版高一第一册数学学案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部