电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 311方程的根与函数的零点 课件6(人教A版必修1)课件 新人教A版必修1 课件VIP免费

高中数学 311方程的根与函数的零点 课件6(人教A版必修1)课件 新人教A版必修1 课件_第1页
1/19
高中数学 311方程的根与函数的零点 课件6(人教A版必修1)课件 新人教A版必修1 课件_第2页
2/19
高中数学 311方程的根与函数的零点 课件6(人教A版必修1)课件 新人教A版必修1 课件_第3页
3/19
在2010年第六期《科学》杂志中有一篇为纪念华罗庚诞辰100周年的文章——一元五次方程求解的往事,该文章中介绍了早在16世纪,数学家就已经解决了一次,二次,三次和四次方程的一般性解法,在随后的三百多年里,方程解法的发展停滞了,直到19世纪挪威年轻数学家阿贝尔成功地证明了五次以上一般方程没有根式解。这就是方程求解的发展史。问题1求下列方程的根.(1)210x;(2)2230xx;(3)062lnxx问题·探究我的根是0.5我的根是3和-1我的根有点难度,等你们学完这节你们就会了!!!上述一元二次方程的实数根二次函数图象与x轴交点的横坐标方程x2-2x+1=0x2-2x+3=0y=x2-2x-3y=x2-2x+1函数函数的图象方程的实数根x1=-1,x2=3x1=x2=1无实数根函数的图象与x轴的交点(-1,0)、(3,0)(1,0)无交点x2-2x-3=0xy0-132112543yx0-12112y=x2-2x+3xy0-132112-1-2-3-4问题2:求出表中一元二次方程的实数根,画出相应的二次函数图像的简图,并写出函数的图象与x轴的交点坐标.问题3:从该表你可以得出什么结论?问题4:若将上面特殊的一元二次方程ax2+bx+c=0(a≠0)推广到一般的一元二次方程及相应二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的关系,上述结论是否仍然成立?(我们以a>0为例)判别式△=b2-4ac△>0△=0△<0函数y=ax2+bx+c(a>0)的图象xyx1x20xy0x1xy0函数的图象与x轴的交点(x1,0),(x2,0)(x1,0)没有交点方程ax2+bx+c=0(a>0)的根两个不相等的实数根x1、x2有两个相等的实数根x1=x2没有实数根结论:一元二次方程的实数根就是相应二次函数图象与x轴交点的横坐标.问题5:其他函数与方程之间也有同样结论吗?方程f(x)=0的实数根函数y=f(x)图象与x轴交点的横坐标0xyx1x2x3x4Y=f(x)一.函数零点的定义:例1:函数f(x)=x(x2-4)的零点为()A.(0,0),(2,0)B.0,2C.(–2,0),(0,0),(2,0)D.–2,0,2函数的零点是实数,而不是点。温馨温馨提示提示11求函数的零点就是求函数所对应方程的根。对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点.D温馨温馨提示提示22思考1:知道了问题4后,大家来想想求函数的零点有哪几种方法??2、区别:1、联系:①数值上相等②存在性相同:函数y=f(x)有零点方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点零点对于函数而言,根对于方程而言.问题6:函数y=f(x)的零点与方程f(x)=0的根有什么联系和区别?代数法图像法牛刀小试223xxx练习:求下列函数的零点(1).f(x)=lgx-1;(2).f(x)=(3).f(x)=3+1我的零点是-1和3我的零点是10不好意思,我没有零点,你答对了吗?问题7:在怎样的条件下,函数y=f(x)在区间[a,b]上存在零点?观察二次函数f(x)=x2-2x-3的图象:在区间[-2,1]上有零点______;f(-2)=_______,f(1)=_______,f(-2)·f(1)_____0“”“”(<或>).在区间(2,4)上有零点______;f(2)·f(4)____0“”“”(<或>).-1-45<3<探究:-22-2-41O1234-3-1-1yx二.零点存在性定理的探究:问题7:在怎样的条件下,函数y=f(x)在区间[a,b]上存在零点?观察函数的图象并填空:①在区间(a,b)上f(a)·f(b)_____0(“<”或“>”).在区间(a,b)上______(有/无)零点;②在区间(b,c)上f(b)·f(c)_____0(“<”或“>”).在区间(b,c)上______(有/无)零点;③在区间(c,d)上f(c)·f(d)_____0(“<”或”>”).在区间(c,d)上______(有/无)零点;有<有<有

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 311方程的根与函数的零点 课件6(人教A版必修1)课件 新人教A版必修1 课件

您可能关注的文档

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群