电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 第八章 立体几何 第6讲 立体几何中的向量方法(一)——证明平行与垂直练习 理 试题VIP免费

高考数学一轮复习 第八章 立体几何 第6讲 立体几何中的向量方法(一)——证明平行与垂直练习 理 试题_第1页
1/6
高考数学一轮复习 第八章 立体几何 第6讲 立体几何中的向量方法(一)——证明平行与垂直练习 理 试题_第2页
2/6
高考数学一轮复习 第八章 立体几何 第6讲 立体几何中的向量方法(一)——证明平行与垂直练习 理 试题_第3页
3/6
第八章立体几何第6讲立体几何中的向量方法(一)——证明平行与垂直练习理新人教A版基础巩固题组(建议用时:40分钟)一、选择题1.平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k),若α∥β,则k=()A.2B.-4C.4D.-2解析 α∥β,∴两平面法向量平行,∴==,∴k=4.答案C2.若AB=λCD+μCE,则直线AB与平面CDE的位置关系是()A.相交B.平行C.在平面内D.平行或在平面内解析 AB=λCD+μCE,∴AB,CD,CE共面.则AB与平面CDE的位置关系是平行或在平面内.答案D3.已知平面α内有一点M(1,-1,2),平面α的一个法向量为n=(6,-3,6),则下列点P中,在平面α内的是()A.P(2,3,3)B.P(-2,0,1)C.P(-4,4,0)D.P(3,-3,4)解析逐一验证法,对于选项A,MP=(1,4,1),∴MP·n=6-12+6=0,∴MP⊥n,∴点P在平面α内,同理可验证其他三个点不在平面α内.答案A4.如图,在长方体ABCD-A1B1C1D1中,AB=2,AA1=,AD=2,P为C1D1的中点,M为BC的中点.则AM与PM的位置关系为()A.平行B.异面C.垂直D.以上都不对解析以D点为原点,分别以DA,DC,DD1所在直线为x,y,z轴,建立如图所示的空间直角坐标系D-xyz,依题意,可得,D(0,0,0),P(0,1,),C(0,2,0),A(2,0,0),M(,2,0).∴PM=(,2,0)-(0,1,)=(,1,-),AM=(,2,0)-(2,0,0)=(-,2,0),∴PM·AM=(,1,-)·(-,2,0)=0,即PM⊥AM,∴AM⊥PM.答案C5.如图所示,在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,则①A1M∥D1P;②A1M∥B1Q;③A1M∥平面DCC1D1;④A1M∥平面D1PQB1.以上正确说法的个数为()A.1B.2C.3D.4解析A1M=A1A+AM=A1A+AB,D1P=D1D+DP=A1A+AB,∴A1M∥D1P,所以A1M∥D1P,由线面平行的判定定理可知,A1M∥面DCC1D1,A1M∥面D1PQB1.①③④正确.答案C二、填空题6.已知直线l的方向向量为ν=(1,2,3),平面α的法向量为u=(5,2,-3),则l与α的位置关系是________.解析 ν·u=0,∴ν⊥u,∴l∥α或l⊂α.答案l∥α或l⊂α7.(2016·青岛模拟)已知AB=(1,5,-2),BC=(3,1,z),若AB⊥BC,BP=(x-1,y,-3),且BP⊥平面ABC,则实数x+y=________.解析由条件得解得x=,y=-,z=4,∴x+y=-=.答案8.已知点P是平行四边形ABCD所在的平面外一点,如果AB=(2,-1,-4),AD=(4,2,0),AP=(-1,2,-1).对于结论:①AP⊥AB;②AP⊥AD;③AP是平面ABCD的法向量;④AP∥BD.其中正确的序号是________.解析 AB·AP=0,AD·AP=0,∴AB⊥AP,AD⊥AP,则①②正确.又AB与AD不平行,∴AP是平面ABCD的法向量,则③正确.由于BD=AD-AB=(2,3,4),AP=(-1,2,-1),∴BD与AP不平行,故④错误.答案①②③三、解答题9.(2016·北京房山一模)如图,四棱锥P-ABCD的底面为正方形,侧棱PA⊥底面ABCD,且PA=AD=2,E,F,H分别是线段PA,PD,AB的中点.求证:(1)PB∥平面EFH;(2)PD⊥平面AHF.证明建立如图所示的空间直角坐标系A-xyz.∴A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),H(1,0,0).(1) PB=(2,0,-2),EH=(1,0,-1),∴PB=2EH,∴PB∥EH. PB⊄平面EFH,且EH⊂平面EFH,∴PB∥平面EFH.(2)PD=(0,2,-2),AH=(1,0,0),AF=(0,1,1),∴PD·AF=0×0+2×1+(-2)×1=0,PD·AH=0×1+2×0+(-2)×0=0,∴PD⊥AF,PD⊥AH,又 AF∩AH=A,∴PD⊥平面AHF.10.(2016·日照调研)如图所示,四棱锥P-ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=,E为PD上一点,PE=2ED.(1)求证:PA⊥平面ABCD;(2)在侧棱PC上是否存在一点F,使得BF∥平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.(1)证明 PA=AD=1,PD=,∴PA2+AD2=PD2,即PA⊥AD.又PA⊥CD,AD∩CD=D,∴PA⊥平面ABCD.(2)解以A为原点,AB,AD,AP所在直线为x轴,y轴,z轴建立空间直角坐标系.则A(0,0,0),B(1,0,0),C(1,1,0),P(0,0,1),E,AC=(1,1,0),AE=.设平面AEC的法向量为n=(x,y,z),则即令y=1,则n=(-1,1,-2).假设侧棱PC上存在一点F,且CF=...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 第八章 立体几何 第6讲 立体几何中的向量方法(一)——证明平行与垂直练习 理 试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部