第2课时对数的运算课后篇巩固提升基础巩固1.已知logx16=2,则x等于()A.±4B.4C.256D.2解析∵logx16=2,∴x2=16.∵x>0且x≠1,∴x=4.答案B2.2log510+log50.25=()A.0B.1C.2D.4解析原式=log5102+log50.25=log5(100×0.25)=log525=2.答案C3.若log23=a,则log49=()A.❑√aB.aC.2aD.a2解析log49=log29log24=2log232=log23=a,故选B.答案B4.1log1419+1log1513等于()A.lg3B.-lg3C.1lg3D.-1lg3解析原式=log1914+log1315=log94+log35=log32+log35=log310=1lg3.答案C5.若2lg(x-2y)=lgx+lgy(x>2y>0),则yx的值为()A.4B.1或14C.1或4D.14解析∵2lg(x-2y)=lgx+lgy(x>2y>0),∴lg(x-2y)2=lgxy,∴(x-2y)2=xy,∴x2-5xy+4y2=0,∴(x-y)(x-4y)=0,∴x=y或x=4y.∵x-2y>0,且x>0,y>0,∴x≠y,∴yx=14.答案D6.计算:2713+lg4+2lg5-eln3=.解析由题意得2713+lg4+2lg5-eln3=(33)13+(lg4+lg25)-eln3=3+2-3=2.答案27.log35log46log57log68log79=.解析log35log46log57log68log79=lg5lg3·lg6lg4·lg7lg5·lg8lg6·lg9lg7=lg8lg9lg3lg4=3lg2·2lg3lg3·2lg2=3.答案38.若2x=3,log483=y,则x+2y=.解析∵2x=3,∴x=log23.∴x+2y=log23+2log483=log23+2×log283log24=log23+log283=log28=3.答案39.如果关于lgx的方程lg2x+(lg7+lg5)lgx+lg7·lg5=0的两个根是lgα,lgβ(α>0,β>0),那么αβ的值是.解析由题意,得lgα+lgβ=-(lg7+lg5)=lg135,所以lg(αβ)=lg135,∴αβ=135.答案13510.计算:(1)lg2+lg5-lg8lg50-lg40;(2)lg12-lg58+lg54-log92·log43.解(1)原式=lg2×58lg5040=lg54lg54=1.(2)(方法一)原式=lg1258+lg54−lg2lg9×lg3lg4=lg(45×54)−lg22lg3×lg32lg2=lg1-14=-14.(方法二)原式=(lg1-lg2)-(lg5-lg8)+(lg5-lg4)-lg2lg9×lg3lg4=-lg2+lg8-lg4-lg22lg3×lg32lg2=-(lg2+lg4)+lg8-14=-lg(2×4)+lg8-14=-14.11.已知log2(log3(log4x))=0,且log4(log2y)=1.求❑√x·y34的值.解∵log2(log3(log4x))=0,∴log3(log4x)=1.∴log4x=3.∴x=43=64.由log4(log2y)=1,知log2y=4,∴y=24=16.因此❑√x·y34=❑√64×1634=8×8=64.能力提升1.若lgx-lgy=a,则lg(x2)3-lg(y2)3=()A.3aB.32aC.aD.a2解析lg(x2)3-lg(y2)3=3(lgx2-lgy2)=3(lgx-lgy)=3a.答案A2.若2loga(P-2Q)=logaP+logaQ(a>0,且a≠1),则PQ的值为()A.14B.4C.1D.4或1解析由2loga(P-2Q)=logaP+logaQ,得loga(P-2Q)2=loga(PQ).由对数运算法则得(P-2Q)2=PQ,即P2-5PQ+4Q2=0,所以P=Q(舍去)或P=4Q,解得PQ=4.答案B3.已知0
y>zB.z>y>xC.z>x>yD.y>x>z解析由题意得x=loga❑√2+loga❑√3=loga❑√6,y=12loga5=loga❑√5,z=loga❑√21-loga❑√3=loga❑√7,因为0loga❑√6>loga❑√7,即y>x>z,故选D.答案D4.某种食品因存放不当受到细菌的侵害.据观察,此食品中细菌的个数y与经过的时间t(单位:min)满足关系y=2t,若细菌繁殖到3个,6个,18个所经过的时间分别为t1,t2,t3,则有()A.t1·t2=t3B.t1+t2>t3C.t1+t2=t3D.t1+t20),且1x+1y=2,则m的值为.解析由2x=5y=m(m>0),得x=log2m,y=log5m,由1x+1y=2,得1log2m+1log5m=2,即logm2+logm5=2,logm(2×5)=2.故有m=❑√10.答案❑√106.已知a>b>1,若logab+logba=52,ab=ba,则a=,b=.解析先求出对数值,再利用指数相等列方程求解.∵logab+logba=logab+1logab=52,∴logab=2或logab=12.∵a>b>1,∴logab0,知t>1,故取以t为底的对数,可得xlogt3=ylogt4=zlogt6=1,∴x=1logt3,y=1logt4,z=1logt6.∵1z−1x=logt6-logt3=logt2=12logt4=12y,∴x,y,z之间的关系为1z−1x=12y.9.已知loga(x2+4)+loga(y2+1)=loga5+loga(2xy-1)(a>0,且a≠1),求log8yx的值.解由对数的运算法则,可将等式化为loga[(x2+4)·(y2+1)]=loga[5(2xy-1)],∴(x2+4)(y2+1)=5(2xy-1).整理,得x2y2+x2+4y2-10xy+9=0,配方,得(xy-3)2+(x-2y)2=0,∴{xy=3,x=2y.∴yx=12.∴log8yx=log812=log232-1=-13log22=-13.