高考创新题的解法2009年全国数学考试大纲(课标版)中,能力要求中指出,能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识。其中创新意识指对新颖的信息、情境和设问,选择有效的方法和手段收集信息,综合与灵活地应用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识:首先是能独立思考、善于发现、提出有价值的问题,选择有效的方法和手段分析信息,综合与灵活地应用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.2007年山东数学考试说明对创新意识的界定是:能够独立思考,灵活和综合地运用所学数学的知识、思想和方法,创造性地提出问题、分析问题和解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题,要注重问题的多样化,体现思维的发散性.精心设计考查数学主体内容、体现数学素质的试题;反映数、形运动变化的试题;研究型、探索型、开放型的试题.一、开放型开放型问题是指那些题目条件不完备、结论不明确、或者答案不唯一,给学生留有较大探索余地的试题.一般有题设开放型、结论开放型、题设和结论均开放型以及解题方法的开放型几类问题.其中结论开放型探索性问题的特点是给出一定的条件而未给出结论,要求在给定的前提条件下,探索结论的多样性,然后通过推理证明确定结论;题设开放型探索性问题的特点是给出结论,不给出条件或条件残缺,需在给定结论的前提下,探索结论成立的条件,但满足结论成立的条件往往不唯一,答案与已知条件对整个问题而言只要是充分的、相容的、独立的.就视为正确的;全开放型,题设、结论都不确定或不太明确的开放型探索性问题,与此同时解决问题的方法也具有开放型的探索性问题,需要我们进行比较全面深入的探索,才能研究出解决问题的办法来。1.条件开放型这类题目的特点是给出了题目的结论,但没有给出满足结论的条件,并且这类条件常常是不唯一的,需要解题者从结论出发,通过逆向思维去判断能够追溯出产生结论的条件,并通过推理予以确认.这种条件探究性问题实质上是寻找使命题为真的充分条件(未必是充要条件).解决此类问题的策略有两种,一种是将结论作为已知条件,逐步探索,找出结论成立所需的条件,这也是我们通常所说的"分析法";第二种是假设题目中指定的探索条件,把它作为已知,并结合其他题设进行推导,如果能正确推导出结论,则此探索条件就可以作为题设条件,直觉联想、较好的洞察力都将有助于这一类问题的解答.1.在四棱锥中,四条侧棱长都相等,底面是梯形,,.为保证顶点P在底面所在平面上的射影O在梯形的外部,那么梯形需满足条件___________________(填上你认为正确的一个条件即可).讲解:条件给我们以启示.由于四条侧棱长都相等,所以,顶点P在底面上的射影O到梯形四个顶点的距离相等.即梯形有外接圆,且外接圆的圆心就是O.显然梯形必须为等腰梯形.再看结论.结论要求这个射影在梯形的外部,事实上,我们只需找出使这个结论成立的一个充分条件即可.显然,点B、C应该在过A的直径AE的同侧.不难发现,应该为钝角三角形.用心爱心专心1DCABE故当(且AC>BC)时可满足条件.其余等价的或类似的条件可以随读者想象.点评:本题为条件探索型题目,其结论明确,需要完备使得结论成立的充分条件,可将题设和结论都视为已知条件,进行演绎推理推导出所需寻求的条件.这类题要求学生变换思维方向,有利于培养学生的逆向思维能力.2.如图,在直四棱柱A1B1C1D1—ABCD中,当底面四边形ABCD满足条件__________时,有A1C⊥B1D1(注:填上你认为正确的条件即可,不必考虑所有可能的情况)分析:本题是条件探索型试题,即寻找结论A1C⊥B1D1成立的充分条件,由AA1⊥平面A1C1以及A1C⊥B1D1(平面A1C1的一条斜线A1C与面内的一条直线B1D1互相垂...